a2 United States Patent

Wright et al.

US009471591B2

US 9,471,591 B2
Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

(56)

2010/0042796 Al
2011/0119668 Al
2011/0196822 Al

7,447,854 Bl
2008/0256314 Al* 10/2008

ITERATIVE DISK UPLOAD BASED ON
DIFFERENCING DISK FORMAT

Inventors: Eron D. Wright, Sammamish, WA
(US); Ismet Erensoy Kahraman,
Seattle, WA (US)

Assignee: Microsoft Technology Licensing, LLC,

Redmond, WA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 768 days.

Appl. No.: 13/462,452

Filed: May 2, 2012

Prior Publication Data

US 2013/0297867 Al Nov. 7, 2013

Int. CL.
GO6F 17/30
GO6F 9/455
U.S. CL
CPC

(2006.01)
(2006.01)
..... GO6F 17/30194 (2013.01); GO6F 9/45558
(2013.01)
Field of Classification Search

CPC GOGF 9/45558; GOG6F 2009/45562;
GOGF 2009/4557; GOGF 2009/45575; GOGF
2009/45579; GOGF 2009/45583; GOGF
2009/45595

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
11/2008 Cannon
Anand GO6F 11/1451
711/162

2/2010
5/2011
8/2011

Vasilevsky et al.
Calder et al.
Zunger et al.

02~

2012/0192175 Al* 7/2012 Dorai GO6F 9/45558

718/1
2012/0215998 Al* 82012 Sharpetal. 711/162
2012/0233522 Al* 9/2012 Barton et al. 714/758

OTHER PUBLICATIONS

Hofstetter, Walter, “XenClient—Disk Management—VHD Files
and Chains”, Published on: Jan. 17, 2011, Available at: http://blogs.
citrix.com/2011/01/17/xenclient-disk-management-vhd-files-and-
chains/.

Petri, Daniel, “Creating Differencing Disks with Microsoft Virtual
PC”, Published on: Jan. 8, 2009, Available at: http://www.petri.co.
il/virtual_ creating_ differencing_ disks with.htm.

Abdullin, Rinat, “Use MDS5 Hashing for your Windows Azure Blob
Operations”, Published on: Nov. 8, 2010, Available at: http://
abdullin.com/journal/2010/11/8/use-md5-hashing-for-your-win-
dows-azure-blob-operations.html.

Brad Calder et al. “Windows Azure Storage: A Highly Available
Cloud Storage Service with Strong Consistency”, Operating Sys-
tems Principles, ACM, Oct. 23, 2011, pp. 143-157.

Hrishikesh Dewan et al., “A Survey of Cloud Storage Facilities”,
Services (Services), 2011 IEEE World Congress on, IEEE, Jul. 4,
2011, pp. 224-231.

Andersen et al., “Hitachi Universal storage Platform Family Best
Practices with Hyper-V”, Hitachi Storage Solutions, Apr. 2009, pp.
1-27.

* cited by examiner

Primary Examiner — Ryan Bertram
(74) Attorney, Agent, or Firm — Ben Tabor; Doug
Barker; Micky Minhas

(57) ABSTRACT

Updating a remote storage data set. A method includes, from
a local service providing a hint of a remote storage data set
that may exist at a remote service. An indication is received
from the remote service that the remote storage data set
exists at the remote service. The method includes requesting
that the remote storage data set be copied at the remote
service to a copy of the remote storage data set. A change to
be applied to the copy of the remote storage data set is sent
to the remote service.

20 Claims, 5 Drawing Sheets

Provide A Hint Of A Remote Storage Data Set
That May Exist At A Remote Service

404~

!

Receive An Indication From The Remote Service That The
Remote Storage Data Set Exists At The Remote Service

406 ~ Y

Request That The Remote Storage Data Set Be Copied At
The Remote Service To A Copy Of The Remote Data Set

408~ ¢

Send A Change To Be Applied To The Copy Of The
Remote Storage Data Set To The Remote Service

US 9,471,591 B2

Sheet 1 of 5

Oct. 18, 2016

U.S. Patent

2, 901
35702 | D750z | D0z | D70z | Drwoe
g2 @

v20e

vorz | W0z | Vewo | Ve | vz

| 8inbi4

v-20L > \% \Nx b xMx kx) v V0T
m VG-v0L k. Vr-p0L H@ YE-r0L x{ Ve¢- w& Vi-v0l o x 1vg

N %%a%%%)
M G i 907
g6-701 x grv0l ,}% gc-r07 <k gz- wS q1-v0! 1vg

Ry V%7 7
77 —
2610} or10L a o¢- E: 2¢-10} oL-+0)
9200 ~> &mmmmm\\x Lvd
9%¢

(9,10
JUdIed)

V3l

(0,40
Juaied)

a3li4

D, 9l

U.S. Patent Oct. 18, 2016 Sheet 2 of 5 US 9,471,591 B2

7

104-

§§_

|
S

\\|

R
N\
RN

'—
<‘8|
m\‘

04-2

722

WW « 102"
7

7

7
%

Figure 2

US 9,471,591 B2

Sheet 3 of 5

U.S. Patent

¢ ainbi4
T | 007 | —
Km:% FF0C 70T KN:K i
7 d =

Oct. 18, 2016

.
/

1vd

{

<04

06¢

U.S. Patent Oct. 18, 2016 Sheet 4 of 5 US 9,471,591 B2

400

402 ~

Provide A Hint Of A Remote Storage Data Set
That May Exist At A Remote Service

404 ~

Receive An Indication From The Remote Service That The
Remote Storage Data Set Exists At The Remote Service

406 ~

Request That The Remote Storage Data Set Be Copied At
The Remote Service To A Copy Of The Remote Data Set

408 —~

Send A Change To Be Applied To The Copy Of The
Remote Storage Data Set To The Remote Service

Figure 4

U.S. Patent Oct. 18, 2016 Sheet 5 of 5 US 9,471,591 B2

500

502 —~

Receive, At A Remote Service, From A Local
Service, A Hint Of A Remote Storage Data Set
That May Exist At The Remote Service

504 —

Determine Based On The Hint, That The Remote
Storage Data Set Exists At The Remote Service

506 ~

Copy The Remote Storage Data Set At The Remote
Service To A Copy Of The Remote Storage Data Set

508 —

Receive A Change, From The Local Service, To
Be Applied To The Copy Of The Remote
Storage Data Set At The Remote Service

510 —~

Apply The Change To The Copy Of The
Remote Storage Data Set

Figure §

US 9,471,591 B2

1
ITERATIVE DISK UPLOAD BASED ON
DIFFERENCING DISK FORMAT

BACKGROUND
Background and Relevant Art

Computers and computing systems have affected nearly
every aspect of modern living. Computers are generally
involved in work, recreation, healthcare, transportation,
entertainment, household management, etc.

Further, computing system functionality can be enhanced
by a computing systems ability to be interconnected to other
computing systems via network connections. Network con-
nections may include, but are not limited to, connections via
wired or wireless Ethernet, cellular connections, or even
computer to computer connections through serial, parallel,
USB, or other connections. The connections allow a com-
puting system to access services at other computing systems
and to quickly and efficiently receive application data from
other computing system.

The connections allow a computing system to access
services at other computing systems and to quickly and
efficiently receive application data from other computing
systems. Further, interconnected computing systems can be
used to implement cluster computing systems where several
discrete systems work together to accomplish a computing
task assigned to the cluster as a whole. Some such systems
may have all, or a portion of the cluster deployed in the
cloud. Cloud computing allows for computing resources to
be provided as services rather than a deliverable product. In
particular, computing power, software, information, etc. are
provided (for example, through a rental agreement) over a
network, such as the Internet.

To use cloud computing, a user uploads their data to a
cloud system, such as Windows Azure® from Microsoft®
Corporation, or Amazon EC2 available from Amazon.com
Inc. of Seattle Wash. Virtual machines are then set-up for the
user at the cloud system using the user’s uploaded data.

Uploading a virtual hard disk may be a time-consuming
task. For operating system images, 10 GB or more is
typically transferred. Often, the disk is subsequently
refreshed with additional data. Refreshing may include, for
example operating system patching, application updates,
and troubleshooting boot issues. It may be that the original
data not be re-transmitted, for example, to conserve network
bandwidth.

The subject matter claimed herein is not limited to
embodiments that solve any disadvantages or that operate
only in environments such as those described above. Rather,
this background is only provided to illustrate one exemplary
technology area where some embodiments described herein
may be practiced.

BRIEF SUMMARY

One embodiment illustrated herein is directed to a method
of updating a remote storage data set. The method includes,
from a local service providing a hint of a remote storage data
set that may exist at a remote service. An indication is
received from the remote service that the remote storage
data set exists at the remote service. The method includes
requesting that the remote storage data set be copied at the
remote service to a copy of the remote storage data set. A
change to be applied to the copy of the remote storage data
set is sent to the remote service.

10

15

20

25

30

35

40

45

50

55

60

65

2

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.

Additional features and advantages will be set forth in the
description which follows, and in part will be obvious from
the description, or may be learned by the practice of the
teachings herein. Features and advantages of the invention
may be realized and obtained by means of the instruments
and combinations particularly pointed out in the appended
claims. Features of the present invention will become more
fully apparent from the following description and appended
claims, or may be learned by the practice of the invention as
set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited
and other advantages and features can be obtained, a more
particular description of the subject matter briefly described
above will be rendered by reference to specific embodiments
which are illustrated in the appended drawings. Understand-
ing that these drawings depict only typical embodiments and
are not therefore to be considered to be limiting in scope,
embodiments will be described and explained with addi-
tional specificity and detail through the use of the accom-
panying drawings in which:

FIG. 1 illustrates a differencing virtual hard disk;

FIG. 2 illustrates a representation of virtual hard disks
including one with sparseness optimizations and one with-
out sparseness optimizations;

FIG. 3 illustrates a virtual hard disk at a local service and
a corresponding blob at a remote service;

FIG. 4 illustrates a method of updating a remote storage
data set; and

FIG. 5 illustrates another method of updating a remote
storage data set.

DETAILED DESCRIPTION

In this description and the following claims, “cloud com-
puting” is defined as a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be provisioned
and released with reduced management effort or service
provider interaction. A cloud model can be composed of
various characteristics (e.g., on-demand self-service, broad
network access, resource pooling, rapid elasticity, measured
service, etc), service models (e.g., Software as a Service
(“SaaS”), Platform as a Service (“PaaS”), Infrastructure as a
Service (“laaS”), and deployment models (e.g., private
cloud, community cloud, public cloud, hybrid cloud, etc.).

Cloud systems, such as the Windows Azure® cloud do not
natively support differencing disk technology. Thus optimi-
zations for iterative upload may be carried out by tooling. By
leveraging differencing disks locally on-premises, cloud
storage primitives, and the semantics of the cloud-based
image repository, an upload tool can enable a patch, update,
or other minimized data upload capability.

An example is now illustrated. Referring now to FIG. 1,
the user creates file 102-A locally on premises at a local
service 250, and uploads it as blob 202-A to a remote service
252 by using an upload tool. Later, the user wishes to refresh
the content. First, the user creates file 102-B and 102-C as

US 9,471,591 B2

3

differencing disks over file 102-A and 102-B respectively.
Differencing disk formats will be discussed in more detail
below. However, in the example illustrated, a hierarchical
differencing structure may include elements corresponding
to blobs at a remote service. For example, the level including
the disk 102-A corresponds to the blob 202-A. When the
user invokes the upload tool, the user supplies the location
of'blob 202-A as a hint. The remote service 252 can indicate
the presence of the blob 202-A. As a result, the upload tool
proceeds to create blob 202-C by remotely copying blob
202-A to blob 202-C and then uploads only the difference
content of file 102-B and 102-C. In particular, blocks
104-2B, 104-3C, 104-4B are uploaded. The net effect is that
blob 202-C contains the same content as it would if the
upload had been performed without the hint and by simply
uploading the entirety of the file 102-C by flattening the
hierarchy of files. At this point the hierarchical differencing
structure at the local service 250 also includes a hierarchical
level, including disk 102-C, that corresponds to the blob
202-C at the remote service 252.

Embodiments may include virtual hard disk format sup-
port. For example, the ability to iteratively construct a
remote virtual hard disk is made possible by parsing the
differencing disk format, identifying the origin of a given
block of data, then optimizing as appropriate.

Embodiments may include functionality for leveraging
storage. As per the previous example, embodiments can
initialize blob 202-C with the contents of blob 202-A, then
proceed to mutate blob 202-C.

Embodiments may include functionality for ensuring
integrity. Ensuring the integrity of the disk is useful for
avoiding expensive live-site investigations. Two mecha-
nisms that may be used in some embodiments to ensure the
integrity of a patch operation will now be illustrated. First,
embodiments check that the local base file (e.g. file 102-A
in the example illustrated above) has not been mutated since
it was uploaded. This may be performed in some embodi-
ments by calculating a hash of the local file, and comparing
it to a hash recorded created when the local file was first
uploaded as the blob 202-A. The hash record created when
the local file was first uploaded is stored as metadata on the
remote blob (i.e. blob 202-A).

Second, embodiments may rely on the semantics of a
cloud image repository. When a given disk file is uploaded
to the cloud, it may be registered with the platform as an
‘image’ for use in virtual machine provisioning. The plat-
form retains an exclusive lease on the blob after that point,
ensuring a read-only semantic. The upload tool at the local
service 250 may then assume that the blob has not been
mutated.

While tools exist to convert a variety of disk formats into
prescribed formats for cloud services, some embodiments
described herein integrate conversion into the platform-
supplied upload tool. The conversion occurs on-the-fly
while the upload proceeds. This may provide efficiency and
convenience for the user.

An aspect of virtual hard disks is that the content is
typically sparse. That is, the virtual stream of information
contains large pockets of emptiness. An example is illus-
trated in FIG. 2. FIG. 2 illustrates a representation of a
virtual hard disk 102. The virtual hard disk 102 includes five
blocks 104-1 through 104-5. Three of the blocks 104-1,
104-2, and 104-5 contain data. The other two blocks 104-3
and 104-4 contain null data. A sparseness optimization can
be performed to create the virtual hard disk 102' as a
dynamic virtual hard disk, rather than the un-optimized
virtual hard disk 102. The virtual hard disk 102" includes the

10

15

20

25

30

35

40

45

50

55

60

65

4

three blocks containing data 104-1, 104-2, and 104-5 and a
block allocation table (BAT) 106. The BAT 106 can be used
to reflect the actual structure of the virtual hard disk 102 by
noting which blocks contain data and/or which blocks
contain nulls. The virtual hard disk 102', may be stored at a
local service 250 (such as local service 250 illustrated in
FIG. 1).

Referring now to FIG. 3, a remote blob 202 will likewise
be sparse, because the prescribed format is based on a 1-1
mapping of disk pages to blob pages. However, the remote
blob at the remote service 252 is not optimized for sparse-
ness but rather includes both blocks containing data 204-1,
204-2 and 204-5 corresponding to the blocks 104-1, 104-2
and 104-5; as well as blocks containing nulls 204-3 and
204-4 corresponding to blocks 104-3 and 104-4 that were
optimized away in the virtual hard disk 102'.

FIG. 3 illustrates an example of uploading blocks using a
dynamic virtual hard drive. For dynamic VHD, as noted
above, the dynamic format contains a data structure known
as the BAT. The BAT 106 provides a map of virtual blocks
to physical blocks. The map is sparse in that not all virtual
blocks have physical data and are understood to be empty.
The virtual stream implementation surfaces sparseness data
based on the BAT 106. When seeking and reading the virtual
stream, the BAT 106 is likewise used. Thus, as illustrated in
FIG. 3, HTTP PUT requests 254 can be used to send blocks
104-1, 104-2 and 104-5 containing data as indicated by the
BAT 106.

By integrating conversion and upload into the local ser-
vice 250, the sparseness metadata stored in the BAT 106 in
supported input formats is leveraged to improve upload
performance. In particular, the sparseness metadata can be
used to optimize what data is uploaded from the local service
250 to the remote cloud service 252. Rather than needing to
upload an entire virtual hard disk 102, individual blocks
containing data, such as blocks 104-1, 104-to in 104-5 can
be uploaded to the blob 202 at the remote cloud service 252.
For example, one or more HTTP ‘PUT’ requests 254 can be
used to upload the block 104-1 to the block 204-1, the block
104-2 to the block 204-2, and the block 104-5 to the block
204-5.

On-the-fly conversion also improves parallelism, avoid-
ing an otherwise slow up-front operation. For example, the
blocks 104-1, 104-2 and 104-5 could each be uploaded to the
remote service 252 and the blob 202 using each their own
individual PUT request 254 such that the blocks could be
uploaded in a parallel fashion.

Further, users do not typically use the ‘fixed’ virtual hard
disk (VHD) formats (such as that illustrated by the virtual
hard disk 102) for their virtualization needs. More often, the
‘dynamic’ and ‘differencing’ disk VHD formats are used.
Dynamic and differencing disks bring numerous manage-
ability benefits, and their use is well-integrated into various
tools and operating systems, such as Hyper-V and Win-
dows® 7 available from Microsoft® Corporation of Red-
mond Wash. On-front conversion to convert a dynamic word
differencing disk to a fixed disk such as that illustrated by
virtual disk 102, is slow, requires ample local disk space, and
yields a duplicative artifact. By integrating conversion from
dynamic and differencing disks formats to formats appro-
priate for the remote blob into the upload tool, users can
work directly with their preferred disk format.

Thus, embodiments may implement format-aware
uploads with automatic conversion to native cloud formats.
Additionally or alternatively, embodiments may retain
sparseness end-to-end.

US 9,471,591 B2

5

Referring once again to FIG. 1, additional details are
illustrated. FIG. 1 illustrates a local service 250. The local
service 250 may be, for example, and on premises service
maintained by an enterprise. The local service 250 receives
anumber of inputs. The local service 250 receives a local file
path, referring to a virtual hard disk (VHD) file 102-C as
generated by Hyper-V, Windows 7, or other compatible tool
as an input. The local service 250 receives a remote blob
URI, referring to a blob at the remote service 252 such as the
blob as illustrated at 202-A, as a hint input. The input may
be the remote image name, referring to a remote blob that is
registered in a cloud system image repository. The reposi-
tory enforces a read-only semantic on blobs that are regis-
tered as an image. In some embodiments, only blobs with
read-only semantics are considered valid input. The input
blob is referred to herein as the ‘base’.

Embodiments may include modules configured to exam-
ine the ‘base’ remote blob. The remote blob is understood to
be a ‘fixed’-format virtual hard disk. The footer of the
remote blob is parsed to obtain the virtual hard disk ‘1D’
field. The ‘1D’ represents the identity of the virtual hard disk
file, and will be used later to identify the corresponding local
file. A header, such as an MDS5 header of the blob, set during
a previous upload, is also obtained.

The local service 250 receives storage credentials,
enabling the local service 250 to authenticate with a remote
storage account at the remote service 252.

Embodiments may include one or more modules 256 at
the local service 250 for parsing VHD file formats. The one
or more modules 256 parse the local file’s header (such as
the BAT 106-A) and footer in accordance with a VHD
specification, such as the VHD 1.0 specification.

In the example illustrated herein, the VHD is classified as
a differencing VHD. An internal abstraction is generated,
known as the virtual stream. The virtual stream provides a
sparse, seekable view of the virtual hard disk in the native
format, such as the format illustrated by the virtual hard disk
102 illustrated in FIG. 2. Input format considerations are
encapsulated behind the virtual stream abstraction. Sparse-
ness information is exposed as a list of block addresses
understood to contain significant data. For example, as
illustrated in FIG. 2, the BAT 106 may identify the blocks
104-1, 104-2, and 104-5 as containing significant data.

FIG. 1 illustrates an example of using differencing VHD
functionality for determining which blocks to upload. For
differencing VHD, the differencing format is an extension to
the dynamic format (such as the dynamic format illustrated
at 102' illustrated in FIGS. 2 and 3). It contains a ‘parent
locator’ structure, providing the location of a local parent
file. When the BAT 106-A does not contain a mapping for a
given virtual block, the parent file may supply the informa-
tion. The parent file itself may be any type of VHD file.
However, if the parent is a differencing file, the process
recurses. The virtual stream implementation encapsulates
this process. Sparseness data is based on the union of the
entire parent tree.

The remote blob 202-A is understood to correspond to a
local virtual hard disk file 102-A that is likewise an ancestor
of the input file 102-C. The parent tree is traversed to locate
the parent file 102-A corresponding to the remote blob
202-A. The parent file 102-A is identified by the ‘ID’
obtained from the base blob described earlier. Note that the
parent file 102-A need not be the immediate parent of the
input file 102-C. Any ancestral depth is acceptable.

Embodiments may include modules configured to vali-
date a parent file 102-A. To ensure the integrity of the overall
process, a header, such as the MD5 hash of the parent file

10

15

20

25

30

35

40

45

50

55

60

65

6

102-A is calculated and compared to that obtained from the
remote blob 202-A as described earlier. The hash of the
parent file 102-A is calculated based on the virtual stream
corresponding to the parent file 102-A, not the hash of the
parent file 102-A itself, because the MDS5 hash on the remote
blob reflects its actual content.

Embodiments may include modules configured to deter-
mine which blocks are to be uploaded. The determination of
which blocks are to be uploaded may based on differences
identified at the local service 250.

FIG. 1 illustrates a virtual hard disk file 102-A that is the
parent file of a virtual hard disk file 102-B, which is in turn
the parent file to virtual hard disk file 102-C. Hard disk files
102-B and 102-C include differences from their parent files,
but not redundant data that already exists in their parent files
or earlier ancestor files. For data that is the same in the
parent and child, reference can simply be made to the parent
or an earlier ancestor for that information. In the example
illustrated in FIG. 1, the shaded blocks represent data unique
to a particular file while the unshaded blocks represent data
that can be found in some hierarchical parent (including
ancestor) file(s). For example, block 104-2B contains dif-
ferent data than block 104-2A. However, block 104-1B and
block 104-1C contain the same data as in block 104-1A.
Further, blocks 104-1B and 104-1C do not physically con-
tain the data but rather refer to the parent file 102-A and the
block 104-1A where the actual data can be found.

Note also that the differencing format may include BATs
for one or more of the files as illustrated in FIG. 1. For
example, FIG. 1 illustrates BATs 106-A, 106-B and 106-C.
Because of the hierarchical nature of differencing format
disks, the sparseness data contained in the BAT 106-A is
preserved in the child files 102-B and 102-C. Differencing
disks contain a BAT, to indicate that a given block super-
sedes that of its parent.

Before uploading the virtual hard disk file 102-C to the
remote service 252 to the blob 202-C, the remote blob 202-C
is initialized. Embodiments may include modules configured
to initialize the remote blob 202-C. An update or patch
operation does not necessarily mutate the base blob 202-A.
Instead, it creates a new blob 202-C whose initial content is
copied from the base blob 202-A. The copy may be created
using a capability of the remote storage service. After
copying the base blob 202-A, further initialization is per-
formed. For each block in the list generated from the
previous step—the blocks intended to be uploaded—em-
bodiments clear the corresponding block of the remote blob
202-C. This can be done to facilitate normal ‘resume’
functionality, which uses the sparseness data to determine
which blocks are potentially outstanding. Clearing a block
may be a capability of the remote storage service. Clearing
a block causes the sparseness of the remote blob to increase.

Iustrating now transferring changes or patches for trans-
ferring differences between the file 102-A and the file 102-C,
the block 104-2B is moved to the block 204-2C; and the
block 104-3C is moved to the block 204-3C the block
104-4B is moved to the block 204-4C. The list of significant
blocks, as per the virtual stream abstraction, is subdivided
amongst a number of worker threads. Each thread proceeds
to seek to an assigned block, read the block, then issue an
HTTP PUT request to the remote storage service. The PUT
request contains a range header that indicates to the storage
service where the block should be placed within the blob.
Retries are issued as necessary to recover from transient
errors. Eventually, all significant blocks have been trans-
ferred and the process terminates.

US 9,471,591 B2

7

Embodiments may include modules configured for
resuming. Given that an upload may take hours or even days
to complete, the client-code component supports resume.
The resume process works like the normal upload process,
except that the already-uploaded blocks are subtracted from
the list of substantial blocks. The list of already-uploaded
blocks may obtained from the remote storage service 252.
Resuming an upload may be based on querying the remote
storage service for sparseness information about the blob;
the intersection of those gaps with the block list obtained
earlier represents the remaining work. The initialization step
of clearing blocks we intend to upload enables this capabil-
ity.

The following discussion now refers to a number of
methods and method acts that may be performed. Although
the method acts may be discussed in a certain order or
illustrated in a flow chart as occurring in a particular order,
no particular ordering is required unless specifically stated,
or required because an act is dependent on another act being
completed prior to the act being performed.

Referring now to FIG. 4, a method 400 is illustrated. The
method includes acts for updating a remote storage data set.
The method includes, from a local service providing a hint
of'a remote storage data set that may exist at a remote service
(act 402). For example, the local service 250 may provide a
hint regarding the blob 202-A, such as the location of the
blob 202-A. The method 400 may be practiced where the
remote storage data set is determined from a differencing
storage at the local service. For example, the local system
250 can use the hierarchical structure of files to find the file
102-A and to use that information as a hint regarding the
blob 202-A.

The method 400 further includes receiving an indication
from the remote service that the remote storage data set
exists at the remote service (act 404). For example, the
remote service 252 may indicate the presence of the blob
202-A.

The method 400 further includes requesting that the
remote storage data set be copied at the remote service to a
copy of the remote storage data set (act 406). This may result
in the blob 202-A being copied to create the blob 202-C.

The method 400 further includes sending a change to be
applied to the copy of the remote storage data set to the
remote service (act 408). For example, as illustrated in FIG.
1, differences between file 102-A and file 102-C can be
determined. The method 400 may be practiced where
changes are determined through differencing storage at the
local service. In particular, it can be determined that blocks
104-1C, 104-2C, 104-4C, 104-5C in the file 102-C differ
from corresponding blocks in file 102-A. This may be
determined, for example, by using differencing disk func-
tionality available at the local service 250. The identified
differences can be sent to the remote service 252 to be
applied to the copied blob 202-C. In some embodiments,
blocks can be sent using individual HTTP PUT requests, one
for each block.

The method 400 may further include, requesting data set
integrity data from the remote service and comparing the
data set integrity data with local integrity data. For example,
embodiments may examine hashes of data sets (such as an
md5 hash) to determine data set integrity. A hash of the file
102-A may be compared to a hash of the blob 202-A as
described above.

Embodiments of the method 400 may be performed
iteratively until a remote data set is found. In particular,
suppose that a local service 250 included a file hierarchy
such as the one illustrated in Figure one and suppose that the

10

15

20

25

30

35

40

45

50

55

60

65

8

following occurs prior to the blob 202-C being created. The
local service 250 could first attempt to identify the blob
corresponding to the file 102-C by sending an appropriate
hint. If that was unsuccessful, the local service 250 could
attempt to identify a blob corresponding to the file 102-B by
sending an appropriate hint. If that were unsuccessful, the
local service could attempt to identify a blob corresponding
to the local file 102-A. As illustrated in FIG. 1, that attempt
would be successful.

Referring now to FIG. 5, a method 500 is illustrated. The
method 500 includes acts for updating a remote storage data
set. The method 500 includes receiving, at a remote service,
from a local service, a hint of a remote storage data set that
may exist at the remote service (act 502). For example, as
illustrated in FIG. 1, the remote service 252 may receive
hints regarding the location of various blobs at the remote
service 252. In the example illustrated, a hint regarding the
location of blob 202-A is received.

The method 500 further includes determining, based on
the hint, that the remote storage data set exists at the remote
service (act 504);

The method 500 further includes copying the remote
storage data set at the remote service to a copy of the remote
storage data set (act 506). For example, as illustrated in FIG.
1, the blob 202-A may be copied to the blob at 202-C

The method 500 further includes receiving a change, from
the local service, to be applied to the copy of the remote
storage data set at the remote service (act 508). For example
as illustrated in FIG. 1, the local service 250 may send
differences between the file 102-A in the file 102-C. As
illustrated previously herein, individual blocks of data may
be sent and applied to the appropriate blocks in the blob
202-C.

Thus, the method 500 further includes applying the
change to the copy of the remote storage data set (act 510).

The method 500 may further include providing data set
integrity data from the remote service for the remote storage
data set. For example, the method 500 may be practiced
where data set integrity data from the remote service and the
local integrity data comprise hashes, such as md5 hashes.
These hashes can be used to ensure that files at the local
service 250 match appropriate blobs at the remote service
252.

Further, the methods may be practiced by a computer
system including one or more processors and computer
readable media such as computer memory. In particular, the
computer memory may store computer executable instruc-
tions that when executed by one or more processors cause
various functions to be performed, such as the acts recited in
the embodiments.

Embodiments of the present invention may comprise or
utilize a special purpose or general-purpose computer
including computer hardware, as discussed in greater detail
below. Embodiments within the scope of the present inven-
tion also include physical and other computer-readable
media for carrying or storing computer-executable instruc-
tions and/or data structures. Such computer-readable media
can be any available media that can be accessed by a general
purpose or special purpose computer system. Computer-
readable media that store computer-executable instructions
are physical storage media. Computer-readable media that
carry computer-executable instructions are transmission
media. Thus, by way of example, and not limitation,
embodiments of the invention can comprise at least two
distinctly different kinds of computer-readable media: physi-
cal computer readable storage media and transmission com-
puter readable media.

US 9,471,591 B2

9

Physical computer readable storage media includes RAM,
ROM, EEPROM, CD-ROM or other optical disk storage
(such as CDs, DVDs, etc), magnetic disk storage or other
magnetic storage devices, or any other medium which can be
used to store desired program code means in the form of
computer-executable instructions or data structures and
which can be accessed by a general purpose or special
purpose computer.

A “network” is defined as one or more data links that
enable the transport of electronic data between computer
systems and/or modules and/or other electronic devices.
When information is transferred or provided over a network
or another communications connection (either hardwired,
wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a
transmission medium. Transmissions media can include a
network and/or data links which can be used to carry or
desired program code means in the form of computer-
executable instructions or data structures and which can be
accessed by a general purpose or special purpose computer.
Combinations of the above are also included within the
scope of computer-readable media.

Further, upon reaching various computer system compo-
nents, program code means in the form of computer-execut-
able instructions or data structures can be transferred auto-
matically from transmission computer readable media to
physical computer readable storage media (or vice versa).
For example, computer-executable instructions or data
structures received over a network or data link can be
buffered in RAM within a network interface module (e.g., a
“NIC”), and then eventually transferred to computer system
RAM and/or to less volatile computer readable physical
storage media at a computer system. Thus, computer read-
able physical storage media can be included in computer
system components that also (or even primarily) utilize
transmission media.

Computer-executable instructions comprise, for example,
instructions and data which cause a general purpose com-
puter, special purpose computer, or special purpose process-
ing device to perform a certain function or group of func-
tions. The computer executable instructions may be, for
example, binaries, intermediate format instructions such as
assembly language, or even source code. Although the
subject matter has been described in language specific to
structural features and/or methodological acts, it is to be
understood that the subject matter defined in the appended
claims is not necessarily limited to the described features or
acts described above. Rather, the described features and acts
are disclosed as example forms of implementing the claims.

Those skilled in the art will appreciate that the invention
may be practiced in network computing environments with
many types of computer system configurations, including,
personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor sys-
tems, microprocessor-based or programmable consumer
electronics, network PCs, minicomputers, mainframe com-
puters, mobile telephones, PDAs, pagers, routers, switches,
and the like. The invention may also be practiced in distrib-
uted system environments where local and remote computer
systems, which are linked (either by hardwired data links,
wireless data links, or by a combination of hardwired and
wireless data links) through a network, both perform tasks.
In a distributed system environment, program modules may
be located in both local and remote memory storage devices.

Alternatively, or in addition, the functionally described
herein can be performed, at least in part, by one or more
hardware logic components. For example, and without limi-

10

15

20

25

30

35

40

45

50

55

60

65

10

tation, illustrative types of hardware logic components that
can be used include Field-programmable Gate Arrays (FP-
GAs), Program-specific Integrated Circuits (ASICs), Pro-
gram-specific Standard Products (ASSPs), System-on-a-
chip systems (SOCs), Complex Programmable Logic
Devices (CPLDs), etc

The present invention may be embodied in other specific
forms without departing from its spirit or characteristics.
The described embodiments are to be considered in all
respects only as illustrative and not restrictive. The scope of
the invention is, therefore, indicated by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

What is claimed is:

1. A method of updating a remote storage data set, the
method comprising:

receiving a hint from a local service, of a remote storage

data set that may exist at a remote service;
receiving an indication, from the remote service, that the
remote storage data set exists at the remote service;

requesting that the remote storage data set be copied at the
remote service to a copy of the remote storage data set
prior to sending any changes to be made to the copy of
the remote storage data set; and

sending a change request corresponding to one or more

change to be applied to the copy of the remote storage
data set at the remote service, the one or more change
corresponding to one or more particular blocks of the
copy, sending the change request causing a clearing of
one or more blocks from the copy prior to application
of the one or more change to the copy, thereby creating
sparseness data in the copy, and causing the one or
more change to be made to the copy of the remote
storage data set when data corresponding to the one or
more change is written to the one or more particular
blocks of the copy.

2. The method of claim 1 further comprising, requesting
data set integrity data from the remote service and compar-
ing the data set integrity data with local integrity data.

3. The method of claim 2, wherein the local integrity data
is determined based on local changes to the local data set.

4. The method of claim 2 wherein data set integrity data
from the remote service and the local integrity data comprise
one or more hashes.

5. The method of claim 2, wherein comparing the data set
integrity data with local integrity data is performed to match
the data set with a local data set.

6. The method of claim 1, wherein providing a hint of a
remote storage data set is performed iteratively by the local
service until an appropriate remote data set is found, such
that a first hint is provided, followed by a second hint that
is different than the first hint after it is determined that the
first hint failed to enable the remote service to indicate that
the remote storage data set exists.

7. The method of claim 1 wherein changes that are sent
from the local service are determined through differencing
storage at the local service.

8. The method of claim 1 wherein the remote storage data
set is determined from a differencing storage at the local
service.

9. A system for updating a remote storage data set, the
system comprising:

one or more processors; and

one or more computer readable media coupled to the one

or more processors, wherein the computer readable
media comprise computer executable instructions that

US 9,471,591 B2

11

when executed by at least one of the one or more

processors causes at least one of the one or more

processors to perform the following:

receiving, at a remote service, from a local service, a
hint of a remote storage data set that may exist at the
remote service;

determining, based on the hint, that the remote storage
data set exists at the remote service;

copying the remote storage data set at the remote
service to a copy of the remote storage data set;

subsequent to copying the remote storage data set into
the copy of the remote storage data set, receiving a
change request of one or more change, from the local
service, to be applied to the copy of the remote
storage data set at the remote service, the one or
more change corresponding to one or more particular
blocks of the copy;

prior to applying the one or more change to the copy,
causing a clearing of one or more blocks from the
copy, thereby creating sparseness data in the copy;
and

applying the change to the copy of the remote storage
data set by writing data corresponding to the one or
more change to the one or more particular blocks of
the copy.

10. The system of claim 9, wherein the computer execut-
able instructions are further executable to cause at least one
of the one or more processors to provide data set integrity
data from the remote service for the remote storage data set.

11. The system of claim 10, wherein data set integrity data
from the remote service and the local integrity data comprise
one or more hashes.

12. The system of claim 9, wherein receiving, at the
remote service, from the local service, a hint of the remote
storage data set that may exist at the remote service is
performed iteratively until it can be determined, based on the
hint, that the remote storage data set exists at the remote
service.

13. The system of claim 9, wherein one or more changes
associated with the change request are determined through
differencing storage at the local service.

14. The system of claim 9, wherein the remote storage
data set is determined from a differencing storage at the local
service.

15. A system for updating a remote storage data set, the
system comprising:

a first computing device that includes one or more first
processors that execute a remote service, wherein the
remote service comprises one or more remote storage
data sets; and

a second computing device that includes one or more
second processors that execute a local service, wherein
the local service:
comprises a hierarchical differencing disk structure

configured to identify differences between different
hierarchical levels of the differencing disk structure,
and wherein the hierarchical differencing disk struc-

25

30

35

40

45

50

12

ture comprises one or more hierarchical levels cor-
responding to one or more remote storage data sets
at the remote service;
configured to provide hints of remote storage data
sets that may exist at the remote service based on
information in the hierarchical differencing disk
structure;
configured to request, in one or more requests to
copy, that one or more remote storage data sets at the
remote service be copied; and
configured to send one or more corresponding
requests for changes, as determined by differences in
the levels of the hierarchical differencing disk struc-
ture, to the remote service to be applied to the one or
more copies of the remote storage data sets; and
wherein the remote service is:
configured to copy the one or more corresponding
copies of the remote storage data sets at the remote
service in response to the one or more requests to
copy and prior to receiving the one or more corre-
sponding requests for changes received from the
local service;
configured to identify and clear one or more blocks of
the one or more corresponding copies based on the
one or more corresponding requests for changes to
thereby create sparseness data in the one or more
corresponding copies prior to applying changes
defined by the one or more corresponding requests
for changes; and
configured to apply the changes defined by the one or
more corresponding requests for changes received
from the local service to the one or more correspond-
ing copies of the remote storage data sets by writing
data to the one or more blocks that were cleared
based on the one or more corresponding requests for
changes.

16. The system of claim 15, wherein the remote service is
configured to provide integrity data about the one or more
remote storage data sets.

17. The system of claim 16, wherein the integrity data
comprises one or more hashes.

18. The system of claim 16, wherein the local service is
configured to compare the integrity data with local integrity
data.

19. The system of claim 15, wherein the local service is
configured to iteratively provide hints to the system service
based on different levels in the hierarchical differencing disk
structure.

20. The system of claim 9, wherein the computer execut-
able instructions are executable by at least one of the one or
more processors to further cause at least one of the one or
more processors to perform the following:

querying for the sparseness data in the copy to identify a

location where to resume applying changes in the copy
of the remote storage data set.

#* #* #* #* #*

